Geometry.

Section 2: Introduction to Geometry – Basic Transformations

Topic 1: Introduction to Transformations	31
Topic 2: Examining and Using Translations	34
Topic 3: Examining and Using Dilations – Part 1	36
Topic 4: Examining and Using Dilations – Part 2	38
Topic 5: Examining and Using Rotations	40
Topic 6: Examining and Using Reflections	43

Visit MathNation.com or search "Math Nation" in your phone or tablet's app store to watch the videos that go along with this workbook!

Section 2: Introduction to Geometry - Basic Transformations

30

The following Mathematics Florida Standards will be covered in this section:

transformations as functions that take points in the plane as inputs and give other points as outputs. Compare G-CO.1.2 - Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations that preserve distance and angle to those that do not.

parallel lines, and line segments. G-CO.1.4 - Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines,

sequence of transformations that will carry a given figure onto itself. G-CO.1.5 - Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure. Specify a

1	A•	4 ω	5	Consider the graph below, circle the pre-image and box the transformed image. Describe the transformation.	The prime notation (') is used to represent a transformed figure of the original figure.	A pre-figure or pre-image is the original object.	In geometry, transformations refer to the of objects on a coordinate plane.	What are some different ways that you can transform a figure?	What do you think happens when you transform a figure?	<u>Section 2: Introduction to Geometry – Basic</u> <u>Transformations</u> <u>Section 2 – Topic 1</u> <u>Introduction to Transformations</u>
A reflection flip image).	A dilation char enlargement o	A translation sli	A rotation turns	There are four commor		Write a real-world exar		Write a real-world exar	$ > A _{\text{the size of the}} $	There are two main cc <i>non-rigid</i> . ≻ A of the pre-ima

here are two main categories of transformations: rigid and **10n-rigid**.

- A _________ transformation changes the size of the pre-image.
- A ______ transformation does not change the size of the pre-image.

Vrite a real-world example of a rigid transformation.

rite a real-world example of a non-rigid transformation.

There are four common types of transformations:

- A rotation turns the shape around a center point.
- A translation slides the shape in any direction.
- A **dilation** changes the size of an object through an enlargement or a reduction.
- A reflection flips the object over a line (as in a mirror image).

Section 2: Introduction to Geometry - Basic Transformations

In the table below, indicate whether the transformation is rigid

Now, identify the transformations shown in the following

- . Consider AB in the coordinate plane below.
- 0 the segment, and the midpoint of the segment. Write the coordinates of each endpoint, the length of

0 Write the coordinates of A' and B' after the following transformations.

Transformations /	l' B'
\overline{AB} is translated 5 units up and 3 units to the left.	
\overline{AB} is rotated 180° clockwise about the origin.	

Try It!

N

- problem. Consider the transformations of AB in the previous
- Ω. Trace the lines and identify the transformations on the graph.

0 of each segment indicated in the chart. What are the A' and B' coordinates for each transformation below? Fill in the length and midpoint

Transformation	Coordinates	Length	Midpoint
Translation	A'(; B'(0	
Dilation	A'(); B'(
Rotation	A'(;); B'(0	
Reflection	A'(;); B'(

BEAT THE TEST!

 Three rays share the same vertex (5,4) as shown in the coordinate plane below.

- Part A: Which figure represents a reflection across the y-axis?
- Part B: Which of the following statements are true about the figure? Select all that apply.
- A rotation of 360° will carry the object onto itself.
- \square A reflection of the figure along the x-axis
- carries the figure to Quadrant II. \Box In Figure A, (x', y') = (x + 10, y).
- □ In Figure A, (x', y') = (x + 10, y). □ If the vertex of Figure A is translated
- (x + 1, y 9), it will carry onto the vertex of Figure B.
- \square Figure C is a reflection on the *x*-axis of Figure A.

<u>Section 2 – Topic 2</u> Examining and Using Translations

A *translation* "slides" an object a fixed distance in a given direction, preserving the same ______ and _____.

Suppose a geometric figure is translated h units along the x-axis and k units along the y-axis. We use the following notation to represent the transformation:

 $T_{h,k}(x, y) = (x + h, y + k) \text{ or } (x, y) \to (x + h, y + k)$

- > (x, y) → (x + 2, y 5) translates the point (x, y) 2 units _____ and 5 units _____.
- > What is the algebraic description for a transformation that translates the point (x, y) 2 units to the left and 3 units upward?
- > What is the algebraic description for a transformation that translates the point (x, y) 3 units to the right and 2 units downward?

Let's Practice!

1. Transform triangle ABC according to $(x, y) \rightarrow (x + 3, y - 2)$. Write the coordinates for triangle A'B'C'.

2. When the transformation $(x, y) \rightarrow (x + 10, y + 5)$ is performed on point *A*, its image, point *A'*, is on the origin. What are the coordinates of *A*? Justify your answer.

Try It!

3. \overline{AP} undergoes the translation $T_{h,k}(x, y)$, such that A'(1, 1) and P'(4, 3).

= _____ units

K

0

- b. Which of the following statements is true?
- (a) \overline{AP} and $\overline{A'P'}$ have different locations.
- (B) \overline{AP} and $\overline{A'P'}$ have different shapes.
- ⓒ \overline{AP} and $\overline{A'P'}$ have different sizes.
- (i) \overline{AP} and $\overline{A'P'}$ have different directions.

BEAT THE TEST!

When the transformation $(x, y) \rightarrow (x - 4, y + 7)$ is performed coordinates of P? on point P, its image is point P'(-3, 4). What are the

-

- (-7, 11)(-1, 3)(1, -3)(7, -11)
- 0000
- N Consider the following points

that R'(5, 1) and U'(16, -10). \overline{RU} undergoes the translation $(x, y) \rightarrow (x + h, y + k)$, such

Part A: Complete the following algebraic description.

$$(x,y) \rightarrow (x +) +)$$

Part B: What is the difference between \overline{RU} and $\overline{R'U'}$?

Examining and Using Dilations – Part 1 Section 2 – Topic 3

Dilation stretches or shrinks the original figure

Consider the following figure

What is making the projected image shrink or grow?

all points are expanded or contracted. The center of dilation is a fixed point in the plane about which

How different is one line from the other in the above figure?

and it is denoted by k. The scale factor refers to how much the figure grows or shrinks,

- V If 0 < k < 1, the image gets smaller and closer to the center of dilation.
- V center of dilation. If k > 1, the image gets larger and farther from the

Consider the following graph.

How do you dilate the line segment on the above graph centered at a point on the same line?

Use (2, 4) as the center of dilation and complete the following:

- > If k = 2, then the dilated line segment will have coordinates: _____ and _____.
- > If $k = \frac{1}{2}$, then the dilated line segment will have coordinates: _____ and _____.
- When dilating a line that passes through the center of dilation, the line is ______.

Consider the following graph.

How do you dilate the line segment on the above graph centered at the origin?

- > If k = 2, then the dilated line segment will have coordinates: _____ and _____.
- > If $k = \frac{1}{2}$, then the dilated line segment will have coordinates: _____ and ____.
- When dilating a line that does not pass through the center of dilation, the dilated line is ______ to the original.
- > (x, y) → (kx, ky) changes the size of the figure by a factor of k when the center of dilation is the origin.

Use (9,6) as the center of dilation and complete the following statements:

- > If k = 4, then the dilated line segment will have the coordinates _____ and _____.
- > If $k = \frac{1}{4}$, then the dilated line segment will have the coordinates _____ and ____.

In conclusion,

- A dilation produces an image that is the same as the original, but is a different _____
- When dilating a line segment, the dilated line segment is longer or shorter with respect to the

Section 2 – Topic 4 Examining and Using Dilations – Part 2

Let's Practice!

- 1. \overline{AB} has coordinates A(-3, 9) and B(6, -12). \overline{PQ} has coordinates P(3, -6) and Q(3, 9).
- a. Find the coordinates of $\overline{A'B'}$ after a dilation with a scale factor of $\frac{2}{3}$ centered at the origin.
- b. Find the coordinates of $\overline{P'Q'}$ after a dilation with a scale factor of $\frac{1}{5}$ centered at (3, -1).
- Line l is mapped onto the line t by a dilation centered at the origin with a scale factor of 3. The equation of line l is 2x - y = 7. What is the equation for line t?
- $\begin{array}{c} (A) \quad 6x 3y = 21 \\ (B) \quad \frac{1}{2}x y = \frac{1}{22} \end{array}$
- (b) $\frac{1}{6}x y = \frac{1}{21}$ (c) y = 2x - 21
- $\begin{array}{c} \bigcirc \quad y = 2x 21 \\ \hline 0 \quad y = 6x 21 \end{array}$
- 3. Suppose the line *l* represented by f(x) = 2x 1 is transformed into g(x) = 2(f(x + 1)) 7.
- a. Describe the transformation from f(x) to g(x).
- b. What is the y-coordinate of g(0)?

Try It!

4. What is the scale factor for the dilation of ABC into A'B'C'?

- 5. \overline{CD} has coordinates C(-8, -2) and D(-4, -12).
- a. Determine the coordinates of $\overline{C'D'}$ if $(x, y) \rightarrow (3x, 3y)$.
- b. Find the coordinates of $\overline{C'D'}$ after a dilation with a scale factor of 2 centered at (2, 2).

BEAT THE TEST!

1. $\overline{M'T'}$ has coordinates M'(-8, 10) and T'(2, -4), and it is the result of the dilation of \overline{MT} centered at the origin. The coordinates of \overline{MT} are M(-4, 5) and T(1, -2). Complete the following algebraic description so that it represents the transformation of \overline{MT} .

$$(x,y) \rightarrow (\bigcap x, \bigcap y)$$

- 2. Line *l* is mapped onto line *m* by a dilation centered at the origin with a scale factor of $\frac{4}{5}$. Line *m* is represented by y = 3x + 8 and it passes through the point which coordinates are (-4, -4). Which of the following is true about line *l*?
- (A) Line l is parallel to line m
- [®] Line *l* is perpendicular to line *m*
- © Line *l* passes through the origin.
- I Line *l* is the same as line *m*.

- Part A: Gladys transformed figure PQR into P'Q'R'. Which of the following represents her transformation?
- A $(x, y) \rightarrow \left(\frac{1}{2}x, \frac{1}{2}y\right)$ $(x, y) \rightarrow (2x, 2y)$
- \odot \bigcirc \odot $(x, y) \rightarrow (x + 3, y + 5)$ $(x, y) \rightarrow (x - 3, y - 5)$
- Part B: She then transformed P'Q'R' into P"Q"R". What is the transformation?

$$(x,y) \rightarrow ($$

Examining and Using Rotations Section 2 – Topic 5

around a fixed point to the right (clockwise) or to the left A rotation changes the (counterclockwise). of a figure by moving it

Let's consider the following graph

after the following rotations about the origin. Use the graph to help you determine the coordinates for (x', y')

Degree	Counterclockwise	Clockwise
90° Rotation:	$R_{90^{\circ}}(3,4) = $	$R_{-90^{\circ}}(3,4) =$
180° Rotation: $R_{180°}(3,4) = .$	$R_{180^{\circ}}(3,4) = $	$R_{-180^{\circ}}(3,4) = $
270° Rotation: $R_{270°}(3,4) = -$	$R_{270^{\circ}}(3,4) =$	$R_{-270^{\circ}}(3,4) =$

around the origin. The function $R_t(x, y)$ rotates the point (x, y) t°

around the origin. The function $R_{-t}(x, y)$ rotates the point (x, y) t°

complete the following table. Make generalizations about rotations around the origin to

Degree	Counterclockwise	Clockwise
90° Rotation:	$(x,y) \rightarrow $	$(x, y) \rightarrow $
180° Rotation:	$(x, y) \rightarrow $	$(x, y) \rightarrow $
270° Rotation:	$(x, y) \rightarrow $	$(x, y) \rightarrow $

counterclockwise? What happens if the rotation is 360° clockwise or

What happens if the center of rotation is not the origin?

90°, 180°, 270°, and 360°? What happens if the degree of rotation is a degree other than

Let's Practice!

- -90° about the origin. \overline{RT} has endpoints R(0,3) and T(4,1). Rotate \overline{RT} clockwise
- 0 RT. Write an algebraic description of the transformation of
- ō What are the endpoints of the new line segment?
- N Let's consider the following graph.

Rotate (3,4) counterclockwise 90° about (5,7).

Section 2: Introduction to Geometry - Basic Transformations

transformation is this? What are the coordinates of $\overline{P'Q'}$? \overline{PQ} has endpoints P(-2, -1) and Q(6, -5). Consider the transformation $(x, y) \rightarrow (y, -x)$ for \overline{PQ} . What kind of

- N Point K(10, -3) is rotated 90° clockwise. Which of the following is the y –coordinate of K'?
- -10
- -3
- ω
- 10
- σ coordinates. Rotate figure ABC 90° clockwise about the origin. complete each blank below with the appropriate Graph the new figure on the coordinate plane and
- CBA $A'(0) \rightarrow A'(0) \rightarrow B'(0) \rightarrow C'(0)$

42

appropriate coordinates.

 $\rightarrow C'($ $\rightarrow B'$

ω Consider the following graph. Try It!

×

and complete each blank below with the origin. Graph the new figure on the coordinate plane. Rotate figure ABC 270° counterclockwise about the

Ω.

- BAC $\rightarrow A'($

<u>Section 2 – Topic 6</u> Examining and Using Reflections

A *reflection* is a mirrored version of an object. The image does not change _____, but the figure itself reverses.

The function $r_{ine}(x, y)$ reflects the point (x, y) over the given line. For instance, $r_{x-axis}(3, 2)$ reflects the point (3, 2) over the *x*-axis.

Let's examine the line reflections of the point (3, 2) over the x-axis, y-axis, y = x, and y = -x.

y = -x	y = x	y-axis	x-axis	Reflection over
$r_{y=-x}(3,2)$	$r_{y=x}(3,2)$	$r_{y-axis}(3,2)$	$r_{x-axis}(3,2)$	Notation
				New coordinates

Make generalizations about reflections to complete the following table.

y = -x	y = x	y-axis	x-axis	Reflection over
$r_{y=-x}(x,y)$	$r_{y=x}(x,y)$	$r_{y-axis}(x,y)$	$r_{x-axis}(x,y)$	Notation
				New coordinates

Let's Practice!

1. Suppose the line segment with endpoints C(1,3) and D(5,2) is reflected over the y-axis, and then reflected again over y = x. What are the coordinates $C^{"}$ and $D^{"}$?

Try It!

N

- Suppose a line segment with endpoints are A(-10, -5) and B(-4, 2) is reflected over y = -x.
- 0 What are the coordinates of A'(.0) and
- 0 Graph $\overline{A'B'}$ on the coordinate plane below.

BEAT THE TEST!

-Consider the following points.

F(-3, -10) and E(10, -3)

Suppose that F' is located at (-3, 10) and E' is located at Let $\overline{F'E'}$ be the image of \overline{FE} after a reflection across line *L*. (10, 3). Which of the following is true about line *l*?

- Line *l* is represented by y = -x.
- (B) (D) Line *l* is represented by y = x.
- 0 Line *l* is represented by the *x*-axis
- Line *l* is represented by the *y*-axis

0

N Suppose a line segment whose endpoints are G(8, 2) and H(14, -8) is reflected over y = x.

What are the coordinates of G'() and H'(3

see how well you know these topics! try out the "Test Yourself! Practice Tool" so you can where you can practice all the skills and concepts you learned in this section. Log in to Math Nation and Now it's time to try the "Test Yourself! Practice Tool," Great job! You have reached the end of this section.

Test Yourself!

Practice Tool

